Numerical Solution of Euler-Bernoulli Beam Equation by Using Barycentric Lagrange Interpolation Collocation Method
نویسندگان
چکیده
منابع مشابه
The numerical stability of barycentric Lagrange interpolation
The Lagrange representation of the interpolating polynomial can be rewritten in two more computationally attractive forms: a modified Lagrange form and a barycentric form. We give an error analysis of the evaluation of the interpolating polynomial using these two forms. The modified Lagrange formula is shown to be backward stable. The barycentric formula has a less favourable error analysis, bu...
متن کاملBarycentric Lagrange Interpolation
Barycentric interpolation is a variant of Lagrange polynomial interpolation that is fast and stable. It deserves to be known as the standard method of polynomial interpolation.
متن کاملSolution of Electrohydrodynamic Flow Equation Using an Orthogonal Collocation Method Based on Mixed Interpolation
In this Paper, we have proposed a new weighted residual method known as orthogonal collocation-based on mixed interpolation (OCMI). Mixed interpolation uses the classical polynomial approximation with two correction terms given in the form of sine and cosine function. By these correction terms, we can control the error in the solution. We have applied this approach to a non-linear boundary valu...
متن کاملChebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
متن کاملNumerical Solution of the Lane-Emden Equation Based on DE Transformation via Sinc Collocation Method
In this paper, numerical solution of general Lane-Emden equation via collocation method based on Double Exponential DE transformation is considered. The method converts equation to the nonlinear Volterra integral equation. Numerical examples show the accuracy of the method. Also, some remarks with respect to run-time, computational cost and implementation are discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Physics
سال: 2021
ISSN: 2327-4352,2327-4379
DOI: 10.4236/jamp.2021.94043